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Electromagnetic Modeling of Waveguides Involving
Finite-Size Dielectric Regions

BARRY J. RUBIN, MEMBER, IEEE

Abstract —A moment method is presented for handling arbitrarily
shaped 2-D and 3-D wavegnides that involve conductors, finite-size
dielectric regions, or both. A novel procedure for modeling the dielectric
allows 2-D rooftop functions to represent both the 3-D polarization
current in the dielectric and the surface current on the conductors, and
precludes the presence of fictitious charge within the dielectric. Exam-
ples include coaxial, microstrip, and dielectric waveguides. Numerical
convergence, consistency with physical principles, and agreement with
the literature are demonstrated.

I. INTRODUCTION

In calculating the scattering or guided-wave properties for
microwave structures using moment methods [1], dielectric re-
gions must often be considered. Stratified dielectrics may be
accounted for by Greens functions that involve Sommerfeld
integrations [2], [3]. For dielectric regions of regular shape,
modal expansions and field matching procedures may be em-
ployed [4]-{8]. Irregularly shaped regions, however, may require
the use of subsectional basis functions to represent either the
diclectric interfaces [9}-[12] or the dielectric volume through the
polarization currents [13]-{17]. The surface formulation may
involve electric currents, magnetic currents, or both and may
involve matching of the electric field, the magnetic field, or
some combination of the two. Because only surfaces need to be
modeled, in general fewer elements are required than in a
volume formulation. Though some surface formulations offer
advantages over others, such as avoidance of resonances associ-
ated with cavities, none have been demonstrated for 3-D struc-
tures where conductor and dielectric regions overlap. In the
volume formulation, the polarization current is represented by a
suitable basis function, and since the effect of the dielectric is
felt only through these currents and their subsequent testing,
free-space Greens functions may be used.

In the past, 3-D pulse basis functions have often been chosen
to represent the polarization current [13]-[15]. Though these
functions are simple, making it easy to both physically represent
the dielectric and :hen calculate the scattered field, in accor-
dance with the continuity equation fictitious rectangular charges
will appear at pulse interfaces where the normal-directed cur-
rent varies. Such fictitious charge, especially at low frequency,
may be the dominant contributor to the electric field and may
introduce serious errors. For scattering problems, where the far
field is of interest, such effects may not be significant [15]. For
guided-wave or source-driven structures, however, the electrical
parameters are more closely tied to the near field, so that one
cannot be comfortable using pulse functions.

Other choices for volume basis functions may also introduce
difficulties. Though the tetrahedral [16] and 3-D rooftop [17]
functions do not produce fictitious charge, they are not well
suited for representing surface current. To model composite
structures, a second type of basis function would therefore be
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Dielectric subdivision, with one cell removed for illustrative pur-
poses.

Fig. 1.

needed. Further, to the author’s knowledge these basis func-
tions remain unproven for guided-wave problems, having ap-
peared only in scattering analyses.

In this paper, 2-D basis functions are used instead. The 2-D
rooftop function is chosen because it is simple and sufficiently
smooth, yet does not give rise to fictitious charge. We first
describe how the dielectric is modeled by rooftop currents and
then discuss the guided-wave formulation, with our intent to
concentrate on the dielectric aspect. The versatility of the ap-
proach and numerical convergence are then demonstrated
through the analysis of representative structures.

II. MopELING THE DIELECTRIC

To represent the volume polarization with surface currents,
the dielectric region is first replaced by a 3-D version of the
thin-wall mechanism employed by Harrington and Mautz to
model dielectric shells [18]. As shown in Fig. 1, the dielectric is
subdivided into sections along the Cartesian coordinates, so that
the region is now composed of 3-D cells having dimensions 7,
7,, and 7,. If we conceptually push the dielectric material out -
from the center of each cell until it is compressed to zero
thickness on the cell walls, a new structure is formed that is
composed only of these zero-thickness cell walls. During com-
pression, as the wall thickness, 8, goes to zero, the dielectric
constant of the material in the wall goes to infinity as 1/8.
Provided the grid is sufficiently fine with respect to wavelength
and feature size and provided that an appropriate sheet
irtpedance is used to describe the cell walls, this new structure
is electrically equivalent to the solid dielectric. We can therefore
model composite structures having their dielectric regions so
replaced, with the full expectation of obtaining equivalent elec-
trical results. Because the cell walls have zero thickness, the
currents that flow are precisely 2-D surface currents; we can
represent them by rooftop functions.

This use of a basis function having fewer dimensions than the
feature being modeled has analogies. For instance, wire-grid
models employ 1-D basis functions to approximate 2-D surfaces
[19], [20]. A 3-D grid of resistors may be used in a dc analysis to
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represent a resistive volume. Such a model is actually a wire-grid
representation, with the resistive material lumped into zero-
radius filaments that touch at points. Based on our physical
understanding and experience, if the models are properly con-
structed, we expect the error to vanish as the grid size is
reduced. The cellular model described above, in fact, is superior
to a wire-grid model [21], because the field on a surface current
is well behaved while that of a line current is singular. A surface
current formulation requires no fine-tuning; wire-grid formula-
tions do, in the form of effective radii bestowed on the filaments
by testing the field radially offset from their centers. As in other
moment approaches, we find a satisfactory grid through numeri-
cal studies and comparisons with the literature. Many solution
techniques involve grids; we just choose to apply a grid prior to
the numerical solution stage.

As a practical example, consider the Teflon used in high-speed
coaxial cables, which may be impregnated with air bubbles to
reduce its effective dielectric constant. At typical frequencies,
the dielectric appears homogeneous. After all, a material con-
structed with very fine cells would be difficult to detect through
bulk electrical measurements. Other examples may be found in
the study of artificial dielectrics.

III. DEFINING THE SHEET IMPEDANCE

We choose a sheet impedance (or equivalently the surface
impedance because the cell walls have zero thickness) such that
the impedance (or capacitance) is the same between two planes
that sandwich a cell of either the solid dielectric or the cellular
replacement. We include only that contribution related to the
volume polarization; in other words, we omit the free-space
contribution [15]. From Fig. 1, the total impedance R, along the
x direction for a single cell of solid dielectric is

T
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where o is the angular frequency, €, is the permittivity of free
space, €, is a relative dielectric constant, and exp(jwt) is the
time dependence. For the cellular structure, the surface
impedance must be such that when multiplied by length 7, and
divided by perimeter 2(r, + 7,) the result is again R,. Thus, the
surface impedance along: x, R,,, is given by
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1 1
2(_+_)
T, T,

= oele 1) @
For walls common to two cells, the impedance would be an
appropriate parallel combination. Through permutation of x, y,
and z, (2) also gives the surface impedances along y and z,
namely R, and R,. Lossy dielectrics (or, for that matter, lossy
. conductor volumes) could be handled through appropriate choice
of a complex permittivity.
The electric field boundary condition, applied over each di-
electric cell wall and conductor surface, is

E-J,R,=0 (3)

where E is the tangential electric field, J, is the surface current -

density, and R is the appropriate surface impedance. For
dielectric volumes, R, is either R, R, or R,,; for perfect

conductors, R, is zero, but for imperfect conductors it may be
determined through skin-effect considerations.
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Fig. 2. A section of conductor showing full and half-rooftop elements and
integration paths.
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Fig. 3.

IV. RoorTop REPRESENTATION

A rooftop function (Fig. 2), which is defined in a plane
containing a surface current, has triangle dependency along the
direction of current flow and pulse dependency in the transverse
direction [22]-[26]. For instance, the rooftop function R, cen-
tered at the origin and corresponding to a current in the x—y
plane that flows along the x direction, may be expressed as

) T <X, 7, /2<y<T1,/2 4
0, elsewhere.

For a half-rooftop, the left or right side of the inequality
involving x would be replaced by 0. The charge produced by a
rooftop function, from the continuity equation applied to (4), is
constant over each rectangular patch it covers; by properly
overlapping the rooftop functions on a surface, variations in the
current flow can be represented smoothly and without produc-
ing fictitious charge.

On a dielectric or conductive surface, both full and half-roof-
tops (Fig. 2) may appear. To guarantee a smoother current
distribution, we force the current to be continuous around
bends by combining half-rooftops to form corner functions (Fig.
3(a)). Mathematically, this is accomplished by making the coeffi-
cients of associated half-rooftops equal or opposite, depending
on the reference convention. This prevents the development of
line charges that would yield an electric field more discontinu-
ous than desired and would slow numerical convergence. Inter-
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nal to dielectric volumes are edges, or junctions, where three or
four cell walls may intersect. At an external edge, only one
corner function is needed (Fig. 3(a)). At three- and four-junc-
tions, respectively, two and three corner functions are used, as
shown in parts (b) and (c¢) of Fig. 3. Because current flows
continuously around each corner function, the total current into
a junction must be zero; using more than two and three corner
functions, respectively, would underspecify the current and ulti-
mately lead to a singular matrix. The field produced by the
rooftop functions must be calculated either very accurately or
analytically. Otherwise, the rooftop functions may effectively
become pulse functions [27] and lose their desirable properties.

At each cell edge internal to the dielectric, three corner
rooftop functions appear. To represent a cell buried within the
dielectric, considering that there are 12 edges per cell but that
each edge is shared by four neighboring cells, nine basis func-
tions per cell are required. This compares with only three for a
wire-grid, 3-D rooftop, or 3-D pulse representation. For 2-D
structures, five rooftop functions per cell are required. This
disadvantage, however, will be offset by the linear fit (along one
direction of the rooftop), the absence of fictitious charge, and
the modeling flexibility afforded by this representation.

V. GumED-WAVE FORMULATION

The guided-wave formulation is that already described in the
literature [22]-[26], aside from the modification of R, discussed
earlier. A unit cell that includes the guided-wave structure is
defined. The unit cell has periodicity d, along x and periodicity
d, along y, but is finite along z. The entire unit cell, and in the
present formulation this includes the dielectric regions as well,
is divided into §,, S, and S, sections along the coordinate axes.
With respect to Fig. 1, S, =d; /7,, S, =d, /7, and S, is the
height of the unit cell divided by 7. The current (both conduc-
tion and polarization components) is represented as a linear
combination of rooftop currents multiplied by the phase factor
exp (jk,x), where the direction of propagation is along x and &,
is the propagation constant. The electric field produced by the
above distribution is found, and the electric field boundary
condition (3) is then applied; it is only here that a distinction is
made, through R, between conduction and polarization cur-
rents. Line function testing of the electric field is used to
generate a matrix equation of the form

Z(k,)I=0. (5)

For a current representation involving P rooftop currents, Z is
an impedance matrix of order P and I is a current column
vector of length P. Each element of the Z matrix relates a line
integral of the electric field to a particular rooftop coefficient.
Because the unit cell is periodic, each element is a Fourier-type
infinite series that involves indices n and m, where n is associ-
ated with the x direction and m with the y direction. The
elements are calculated analytically, with accuracy limited only
by the number of terms used in the infinite series. Good results
[22], [23] have been obtained when the infinite series are trun-
cated according to |#| < N and |m| < M, where

d, d,

and M= (6)

" min(r,,7,) min(7,,7,)

Equation (5) represents an eigenvalue problem. As discussed
in [24]-[26], such a problem may be solved through a Newton
search and standard linear algebra techniques. In brief, values
of k, that make det(Z) vanish are found and then substituted
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back into (5) to obtain I; the values of k, are the eigenvalues
and the corresponding values of I are the eigenvectors. Once
the current distribution is found, the characteristic impedance
for quasi-TEM structures may be found through appropriate
integrations of the electric field. Equivalent values of capaci-
tance and inductance may then be obtained from the impedance
and propagation constant [24]. The derivation of the Z matrix
elements is given in [22]. Explicit formulas for a subset of these
elements are given in [24] and [25].

In the following examples, propagation is along the x direc-
tion. Rooftop current elements, as described earlier, will repre-
sent the currents in the x-y, y-~z, and x-z planes, with
current flow along two directions in each plane. For the 2-D
structures, currents appear only on the x—z and x-y planes
and only one subdivision along x is used (S, = 1); the x-directed
currents will be represented only by full rooftops along the x
direction. Because the x dependence of the current in 2-D
structures must have the form exp(jk, x), the infinite series will
be truncated according to N =0, and not N as given by (6).
Although coupling between waveguides can be investigated
[22]-[25], here we are concerned with isolated structures. The
periodicity of the unit cell along y will be set large enough so
that coupling between adjacent unit cells can be ignored. Be-
cause d, cannot be made infinite, some peculiaritics in the
solutions may occur; these will be discussed as they arise.

VI. NumeEericaL REsuLTs

The first example, used for convergence studies, is a square
coaxial cable filled with a dielectric material having e, = 100.
Fig. 4 shows a quarter section of the structure and gives the
normalized transverse current distribution for b /A, = 0.00133
and §, =S, =8, where A, is the free-space wavelength. Corner
functions are used to represent the y-directed current in the
x-y plane and the z-directed current in the x—z plane; the
x-directed currents are not shown. On a cell wall, as many as
four corner functions may partially overlap, as do the corner
functions in Fig. 4(a) having values — 766, 472, 91, and -—384.

The net current flow is obtained by adding the contributions
of corner functions where they overlap and is shown in Fig. 4(b).
The currents shown are those just entering or leaving a junction;
corresponding to the rooftop representation, the current varies
linearly across a wall. Consistent with the use of corner func-
tions, the net current is zero at all junctions. The current varies
only slightly over each wall, so that here too, from the continuity
equation, essentially no charge is developed. This absence of
charge is expected in a homogeneous dielectric region. On the
conductors, though, the currents differ and there is a net charge
density. As expected, the minimum and maximum fields (and
thus polarization currents) are at the outside and inside metal
corners, respectively.

Though nearly perfect symmetry is observed for the polariza-
tion currents about the 45° line bisecting the quarter section,
some asymmetry is observed on the conductors’ surface current.
This is an artifice and results from the periodicity along y but
not along z that is assumed in the solution technique. As the
grid becomes finer or as more Fourier series terms are used in
calculating the matrix elements, this asymmetry decreases. For
this example only, the M used was four times that given in (6).
The x-directed currents are negligible in the dielectric but large
on the conductors. Their contribution to the charge density, in
either case, is small and does not alter the arguments made
above. :
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Fig. 4. Normalized current in a quarter section of the coaxial structure
(b /1y =0.00133, €, =100, S, = §, = 8). (a) In terms of corner currents.
(b) Net currents.

TABLE 1
NORMALIZED PROPAGATION CONSTANT AND
CAPACITANCE FOR COAXIAL STRUCTURE
(e, =100, b /A, = 0.00133)

S, S, k,/k, C (pF/cm)
4 4 10.946 106.1

8 8 10.325 95.84
16 16 10.118 92.61
32 32 10.043 91.38

Because the coaxial structure is TEM, no-transverse current
should flow on its conductors. From Fig. 4(b), the current on the
‘conductors alternates between positive and negative values. As
the grid is made finer, such a distribution will appear on average
as that of a zero current flow.

The propagation constant and the capacitance are given in
Table 1. For the coarsest grid (S, =S, =4), the propagation
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Fig. 5. Effective dielectric constant in microstrip structure (w; = 0.01 cm,
t=0.002cm, d, = 0.1 cm, f=1.0 GHz, S, = 4).
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Fig. 6. Effective refractive index for ribbed waveguide Qa /t=1, h /t=1,
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constant normalized to the free-space wavenumber is 10.946 and
the capacitance, C, is 106.1 pF/cm. As the grid is made finer
along each direction by a factor of 2, the respective values
monotonically approach the values of 10 (expected for a TEM
structure having €, = 100) and 90.49 pF /cm (calculated through
a 2-D capacitance algorithm). Though moment method solutions
involving the electric field are often unstable at lower frequen-
cies [28], no instabilities were observed here desplte a coaxial
cross section that is only 0.00133A, across.

The next structure considered is a microstrip which displays
an interesting peak in effective relative dielectric constant e
that is not predicted from the static capacitance calculation. The
effective dielectric constant at frequency f =1 GHz is plotted in
Fig. 5, and compared with results obtained using the approach
of Gurel and Chew [3]. A grid of S,=100 and §,~4 gives
agreement to within 9%. A finer but nonuniform grid (corre-
sponding to S, =300 in the regions near conductor edges) gives
agreement to within 4%. This still noticeable difference is
attributed to the edge singularity. The basis functions in [3],
which were carefully selected to model this particular structure,
represent the edge current better than the rooftop. The above
accuracies, however, are in line with moment method solutions
that employ a single type of subsectional basis function.

The next structure is a ribbed dielectric waveguide (Fig. 6)
having a refractive index n, =\/€ =1.461 and investigated by
Tsuji er al. [6]. Since the field may not be tightly confined
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(especially at larger wavelengths) significant coupling between
the rib regions in adjacent unit cells may occur. This coupling is
minimized by making d,, the distance between the ribs in
adjacent unit cells, substantial; in [6], d, is infinite. The effective
refractive index, n.y, is closely predicted for the lowest order
modes (denoted by a 0 subscript), which in [6] are described as
being essentially TE or TM to the vertical direction. Halving S,
and S, causes only a small difference. The higher order TE and
TM modes can be calculated, although their more rapid spatial
variation requires that the grid bé finer. In this and the follow-
ing figure, the axes are normalized to be consistent with those
appearing in the references.

In performing the Newton search, some difficulty was encoun-
tered. The determinant of Z varies, though generally monotoni-
cally, through many orders of magnitude as k, is incrementally
increased. The solution, however, occurs at a relative minimum.
Though convergence is generally within four iterations once a
satisfactory starting value for k, in the Newton search is found,
finding that starting point may take some effort. Another con-
cern is that as d, is increased to reduce coupling, modes having
lower spatial frequency along y may also satisfy the boundary
conditions (as in a resonant cavity whose length increases) and
this causes a splitting of the dispersion relation. For these
modes, the polarization current varies sinusoidally in the region
between ribs. The desired mode is identified by a generally
monotonic decrease in magnitude with y distance from the rib,
which is the evanescent behavior expected for a ribbed wave-
guide unbounded along the y direction [6].

In the last example, a square dielectric waveguide (Fig. 7) is
analyzed and compared with the results reported by Goell [5].
Though the unit cell is subdivided along y into 80 sections, this
corresponds to only eight sections along the dielectric region.
Excellent agreement is obtained, although difficulty was again
encountered in the Newton search. A similar, but hollow, struc-
ture (hollow region is a/2 by a/2 and centered) was also
analyzed. A periodic array of holes is then introduced into the
solid waveguide, with the first stopband plotted for the grid
S,=4,5,=80,and S, =8. As expected, for wavelengths below
that corresponding to the stopband (at 1.75 on the independent
axis), the propagation constant falls between that for the solid
and hollow cases. Near the stopband, as also expected, the curve
rises dramatically. '

VIL

A procedure for modeling volume polarization currents using
surface currents has been explored and successfully applied to a
number of representative waveguide structures. These structures
represent a stringent test of the approach, since the results
involve near-field quantities. Based on the numerical conver-
gence and the generally close agreement with previously pub-
lished results, the use of rooftop currents and, in particular,
corner rooftop functions within dielectric volumes has been
justified. Many other structures could be handled, including
those composed of spatially varying or even anisotropic dielec-
tric constants. By defining unit cells that include multiple wave-
guides, coupling effects can be calculated. Though only guided-
wave problems were investigated here, this volume polarization
formulation has also been successfully applied to source-fed and
scattering problems [29].

The approach does have constraints. Structure boundaries
that do not lie on a Cartesian coordinate grid would have to be
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approximated by steps. Because of the roughly eight to 16 grid
sections per wavelength usually required for moment method
solutions, the dielectric is limited to perhaps several cubic
wavelengths for 3-D problems and perhaps several tens of
square wavelengths for 2-D problems. This rules out analysis of
structures involving dielectric half-spaces. Some difficulty was
encountered, though only in purely dielectric structures, in
finding a suitable. starting point for the Newton search. This
difficulty would become more severe if radiative structures were
considered, since a suitable guess would have to include both
real and imaginary parts of the propagation constant.

Because only a single type of basis function is used, the
accuracy may fall short of that possible from approaches where
basis functions are specifically tailored to the structure, and
especially to any conductor edges that may be present. But the
virtue of this approach would become apparent in a setting
where solutions of engineering accuracy for a wide variety of
problems might be needed. It would not be necessary to investi-
gate the literature and develop an assortment of individual
algorithms. This single approach could be used to solve a large
class of two- and. three-dimensional problems.
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A Local Mesh Refinement Algorithm for the Time
Domain-Finite Difference Method Using Maxwell’s
Curl Equations

THN S. KIM, STUDENT MEMBER, IEEE, AND
WOLFGANG J. R. HOEFER, SENIOR MEMBER, IEEE

Abstract —In this paper we consider an efficient local mesh refinement
algorithm subdividing a computational domain to resolve fine dimen-
sions in a TD-FD space—time grid structure. At a discontinuous
coarse—fine mesh interface, the boundary conditions for the tangential
and normal field components are enforced for a smooth transition of
highly nonuniform field quantities.

I. InTRODUCTION

It is rather straightforward to model a region with smoothly
varying field by using a uniform grid system of large mesh size.
However, when the computational domain contains sharp dis-
continuities or objects, the fields become highly nonuniform in
the vicinity of the discontinuities, and a mesh of very small mesh
size must be employed. This requires a very extensive computa-
tional effort.

There are two ways to take into account the strong nonuni-
formity around a local discontinuity. The first is to use a mesh
with gradually changing mesh size as it is currently employed in
the TLM method. Such a procedure was introduced in the
TD-FD method by Choi and Hoefer [1]. The problem with this
method is that for a constant stability factor throughout the
mesh, the time step Ar must always be varied in accordance
with the local mesh size Al

In this paper, we propose an alternative approach, which was
presented in more general form by Berger and Oliger [2] in 1984
for simple general hyperbolic partial differential equations. We
have applied this approach specifically to Maxwell’s two curl
equations. In this approach we embed a locally uniform mesh of
higher density into the larger mesh. The local uniformity of the
mesh is important for keeping the same stability criterion during
a simulation. This means that in the different subparts of the
mesh, the ratio of A¢ to Al is kept the same. This has the
advantage that in all subareas of the mesh exactly the same
TD-FD algorithm can be employed.

Furthermore, Holland and Simpson [3] introduced the thin-
strut formalism to include arbitrarily fine wires in their TD-FD
code, THREDE, in 1981. Kunz and Simpson [4] also introduced
an expansion approach to resolve locally fine objects. They first
computed the field with a coarse mesh, thus obtaining the values
of the tangential electric field at interfaces with a subsequently
refined mesh area, which was analyzed in a second run.

In our approach, the coarse and the fine mesh regions are
solved simultaneously, and the boundary conditions between the
two regions are enforced to ensure a smooth transition of highly
nonuniform field quantities. Furthermore, this scheme is recur-
sive; that is, it can provide a finer and finer resolution if
necessary.
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