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Electromagnetic Modeling of Waveguides Involving

Finite-Size Dielectric Regions

BARRY J. RUBIN, MEMBER, IEEE

Abstract —A moment method is presented for handling arbitrarily

shaped 2-D and 3-D waveguides that involve conductors, finite-size

dielectric regions, or both. A novel procedure for modeling the dielectric

allows 2-D rooftop functions to represent both the 3-D polarization

current in the dielectric and the surface current on the conductors, and

precludes the presence of fictitious charge within the dielectric. Exam-

ples include coaxial, microstrip, and dielectric wavegnides. Numerical

convergence, consistency with physical principles, and agreement with

the literature are demonstrated.

I. INTRODUCTION

In calculating the scattering or guided-wave properties for

microwave structures using moment methods [1], dielectric re-

gions must often be considered. Stratified dielectrics may be

accounted for by Greens functions that involve Sommerfeld

integrations [2], [3]. For dielectric regions of regular shape,

modal expansions and field matching procedures may be em-

ployed [4]–[8]. Irregularly shaped regions, however, may require

the use of subsectional basis functions to represent either the

dielectric interfaces [9]–[12] or the dielectric volume through the

polarization currents [13]–[17]. The surface formulation may

involve electric currents, magnetic currents, or both and may

involve matching of the electric field, the magnetic field, or

some combination of the two. Because only surfaces need to be

modeled, in general fewer elements are required than in a

volume formulation. Though some surface formulations offer

advantages over others, such as avoidance of resonances associ-

ated with cavities, none have been demonstrated for 3-D struc-

tures where conductor and dielectric regions overlap. In the

volume formulation, the polarization current is represented by a

suitable basis function, and since the effect of the dielectric is

felt only through these currents and their subsequent testing,

free-space Greens functions may be used.

In the past, 3-D pulse basis functions have often been chosen

to represent the polarization current [13]–[15]. Though these

functions are simple, making it easy to both physically represent

the dielectric and :.hen calculate the scattered field, in accor-

dance with the continuity equation fictitious rectangular charges

will appear at pulse interfaces where the normal-directed cur-

rent varies. Such fictitious charge, especially at low frequency,

may be the dominant contributor to the electric field and may

introduce serious errors. For scattering problems, where the far

field is of interest, such effects may not be significant [15]. For

guided-wave or source-driven structures, however, the electrical

parameters are more closely tied to the near field, so that one

cannot be comfortable using pulse functions.

Other choices for volume basis functions may also introduce

difficulties. Though the tetrahedral [16] and 3-D rooftop [17]

functions do not produce fictitious charge, they are not well

suited for representing surface current. To model composite

structures, a second type of basis function would therefore be
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Fig. 1. Dielectric subdivision, with one cell removed for illustrative pur-

poses.

needed. Further, to the author’s knowledge these basis func-

tions remain unproven for guided-wave problems, having ap-

peared only in scattering analyses.

In this paper, 2-D basis functions are used instead. “The 2-D

rooftop function is chosen because it is simple and sufficiently

smooth, yet does not give rise to fictitious charge. We first

describe how the dielectric is modeled by rooftop currents and

then discuss the guided-wave formulation, with our intent to

concentrate on the dielectric aspect. The versatility of the ap-

proach and numerical convergence are then demonstrated

through the analysis of representative structures.

II. MOEIELING THE DIELECTRIC

To represent the volulme polarization with surface currents,

the dielectric region is first replaced by a 31D versicm of the

thin-wall mechanism employed by Barrington and Mautz to

model dielectric shells [18]. As shown in Fig. 1, the dielectric is

subdivided into sections along the Cartesian coordinates, so that

the region is now composed of 3-D cells having dimensions 7X,

7Y, and 7=. If we conceptually push the dielectric material out

from the center of eaclh cell until it is compressed to zero

thickness on the cell walls, a new structure is formed that is

composed only of these zero-thickness cell walls. During com-

pression, as the wall thickness, 8, goes to zero, the dielectric

constant of the materiall in the wall goes to, infinity as 1/8.

Provided the grid is sufficiently fine with respect to wavelength

and feature size and provided that an appropriate sheet

itiipedance is used to describe the cell walls, this new structure

is electrically equivalent to the solid dielectric. We can therefore

model composite structures having their dielectric regions so

replaced, with the full expectation of obtaining equivalent elec-

trical results, Because tlhe cell walls have zero thickness, the

currents that flow are precisely 2-D surface currents; we can

represent th~m by rooftc,p functions.

This use of a basis function having fewer dimensions than the

feature being modeled has analogies. For instance, wire-grid

models employ 1-D basis functions to approximate 2-D surfaces

[19], [20]. A 3-D grid of resistors maybe used in a dc analysis to
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represent a resistive volume. Such a model is actually a wire-grid

representation, with the resistive material lumped into zero-

radius filaments that touch at points. Based on our physical

understanding and experience, if the models are properly con-

structed, we expect the error to vanish as the grid size is

reduced. The cellular model described above, in fact, is superior

to a wire-grid model [21], because the field on a surface current

is well behaved while that of a line current is singular. A surface

current formulation requires no fine-tuning; wire-grid formula-

tions do, in the form of effective radii bestowed on the filaments

by testing the field radially offset from their centers. As in other

moment approaches, we find a satisfactory grid through numeri-

cal studies and comparisons with the literature. Many solution

techniques involve grids; we just choose to apply a grid prior to

the numerical solution stage.

As a practical example, consider the Teflon used in high-speed

coaxial cables, which may be impregnated with air bubbles to

reduce its effective dielectric constant. At typical frequencies,

the dielectric appears homogeneous. After all, a material con-

structed with very fine cells would be difficult to detect through

bulk electrical measurements. Other examples may be found in

the study of artificial dielectrics.

III. DEFINING THE SHEET IMPEDANCE

We choose a sheet impedance (or equivalently the surface

impedance because the cell walls have zero thickness) such that

the impedance (or capacitance) is the same between two planes

that sandwich a cell of either the solid dielectric or the cellular

replacement. We include only that contribution related to the

volume polarization; in other words, we omit the free-space

contribution [15]. From Fig. 1, the total impedance Rx along the

x direction for a single cell of solid dielectric is

(1)

where o is the angular frequency, CO is the permittivity of free

space, .E, is a relative dielectric constant, and exp ( jw t) is the

time dependence. For the cellular structure, the surface

impedance must be such that when multiplied by length r, and

divided by perimeter 2(7Y + r=) the result is again Rx. Thus, the

surface impedance along x, R~x, is given by

(2)

For walls common to two cells, the impedance would be an

appropriate parallel combination. Through permutation of X, y,

and z, (2) also gives the surface impedances along y and z,

namely R,y and R~z. Lossy dielectrics (or, for that matter, lossy

conductor volumes) could be handled through appropriate choice

of a complex permittivity.

The electric field boundary condition, applied over each di-

electric cell wall and conductor surface, is

E–J,R, =O (3)

where E is the tangential electric field, J. is the surface current

density, and R. is the appropriate surface impedance. For

dielectric volumes, R, is either R~x, R~v, or R~z; for perfect

conductors, R, is zero, but for imperfect’ conductors it may be

determined through skin-effect considerations.

Fig. 2. A section of conductor showing full and half-rooftop elements and

integration paths.
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Fig. 3. Representation of junction current. (a) At external edge. (b) At

three-junction. (c) At four-junction.

IV. RooFToP REPRESENTATION

A rooftop function (Fig. 2), which is defined in a plane

containing a surface current, has triangle dependency along the

direction of current flow and pulse dependency in the transverse

direction [22]–[26]. For instance, the rooftop function R, cen-

tered at the origin and corresponding to a current in the x – y

plane that flows along the x direction, may be expressed as

(11R=l–~, ‘TX< X< TX,
Tx -TJ’/2<y<Ty’”2 (4)

10, elsewhere.

For a half-rooftop, the left or right side of the inequality

involving x would be replaced by O. The charge produced by a

rooftop function, from the continuity equation applied to (4), is

constant over each rectangular patch it covers; by properly

overlapping the rooftop functions on a surface, variations in the

current flow can be represented smoothly and without produc-

ing fictitious charge.

On a dielectric or conductive surface, both full and half-roof-

tops (Fig. 2) may appear. To guarantee a smoother current

distribution, we force the current to be continuous around

bends by combining half-rooftops to form corner functions (Fig.

3(a)). Mathematically, this is accomplished by making the coeffi-

cients of associated half-rooftops equal or opposite, depending

on the reference convention. This prevents the development of

line charges that would yield an electric field more discontinu-

ous than desired and would slow numerical convergence. Inter-
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nal to dielectric volumes are edges, or junctions, where three or

four cell walls may intersect. At an external edge, only one

corner function is needed (Fig. 3(a)). At three- and four-junc-

tions, respectively, two and three corner functions are used, as

shown in parts’ (b) and (c) of Fig. 3. Because current flows

continuously around each corner function, the total current into

a junction must be zero; using more than two and three corner

functions, respectively, would underspecify the current and ulti-

mately lead to a singular matrix. The field produced by the

rooftop functions must be calculated either very accurately or

analytically. Otherwise, the rooftop functions may effectively

beeome pulse functions [27] and lose their desirable properties.

At each cell edge internal to the dielectric, three corner

rooftop functions appear. To represent a cell buried within the

dielectric, considering that there are 12 edges per cell but that

each edge is shared by four neighboring cells, nine basis func-

tions per cell are required. This compares with only three for a

wire-grid, 3-D rooftop, or 3-D pulse representation, For 2-D

structures, five rooftop functions per cell are required. This

disadvantage, however, will be offset by the linear fit (along one

direction of the rooftop), the absence of fictitious charge, and

the modeling flexibility afforded by this representation.

V. GUIDED-WAVE FORMULATION

The guided-wave formulation is that already described in the

literature [22]–[26], aside from the modification of R, discussed

earlier. A unit cell that includes the guided-wave structure is

defined. The unit cell has periodicity dl along x and periodicity

ti2 along y, but is finite along z. The entire unit cell, and in the

present formulation this includes the dielectric regions as well,

is divided into SX, SY, and S= sections along the coordinate axes.

With respect to Fig. 1, SX = dl /rx, Sv = d2 /Ty, and S= is the

height of the unit cell divided by T=. The current (both conduc-

tion and polarizaticm components) is represented as a linear

combination of rooftop currents multiplied by the phase factor

exp ( jkXx), where the direction of propagation is along x and kX

k the propagation constant. The electric field produced by the

above distribution is found, and the electric field bounda~

condition (3) is then applied; it is only here that a distinction is

made, through R~, between conduction and polarization cur-

rents. Line function testing of the electric field is used to

generate a matrix equation of the form

z(kx)I=o. (5)

For a current representation involving P rooftop currents, Z k

an impedance matrix of order P and Z k a current column

vector of length P. Each element of the Z matrix relates a line

integral of the electric field to a particular rooftop coefficient.

Because the unit cell is periodic, each element is a Fourier-type

infinite series that involves indices n and m, where n k associ-

ated with the x direction and m with the y direction. The

elements are calculated analytically, with accuracy limited only

by the number of terms used in the infinite series. Good results

[22], [23] have been obtained when the infinite series are trun-

cated according to In I < N and Irnl < M, where

d, d2
N= and M = (6)

min ( 7X, 7=) min ( 7Y, t-z)“

Equation (5) represents an eigenvalue problem. As discussed

in [24]–[26], such a problem may be solved through a Newton

search and standard linear algebra techniques. In brief, values

of kz that make det (Z) vanish are found and then substituted

back into (5) to obtain Z; the values of kx are the eigenvalues

and the corresponding values of I are the eigenvectors. Once

the current distribution is found, the characteristic impedance

for quasi-TEM structures may be found through appropriate

integrations of the electric field. Equivalent values of capaci-

tance and inductance may then be obtained from the impedance

and propagation constant [24]. The derivation of the Z matrix

elements is given in [22]. IExplicit formulas for a subset of these

elements are given in [24] and [25].

In the following examples, propagation is along the x direc-

tion. Rooftop current elements, as described earlier, will repre-

sent the currents in the x – y, y – z, and x – z planes, with

current flow along two directions in each plane. For the 2-D

structures, currents appear only on the x – z and x – y planes

and only one subdivision along x is used (SX = 1); the x-directed

currents will be represented only by full rooftops along the x

direction. Because the x dependence of the current in 2-D

structures must have the form exp (jkX x), the infinite series will

be truncated according to N= O, and not N as given by [6).
Although coupling between waveguides can be investigated

[22]-[25], here we are concerned with isolated structures. The

periodicity of the unit cell along y will be set large enough so

that coupling between adjacent unit cells can be ignored. Be-

cause d2 cannot be macle infinite, some peculiarities in the

solutions may occuc thlese will be discussed as they arise.

VI. NUMERICAL RESULTS

The first example, used for convergence studies, is a square

coaxial cable filled with a dielectric material having e, = 100.

Fig. 4 shows a quarter section of the structure and gives the

normalized transverse current distribution for b/A ~ = 0.00133

and SY = S= = 8, where A~ is the free-space wavelength. Corner

functions are used to represent the y-directed current in the

x – y plane and the z-directed current in the x – z plane; the

x-directed currents are nclt shown. On a cell wall, as many as

four corner functions may partially overlap, as do the corner

functions in Fig. 4(a) having values – 766, 472, 91, and – 384.

The net current flow is obtained by adding the contributions

of corner functions where they overlap and is shown in Fig. 4(b).

The currents shown are those just entering or leaving a junction;

corresponding to the rlooftop representation, the current varies

linearly across a wall. Consistent with the use of corner func-

tions, the net current is zero at all junctions. The current varies

only slightly over each walll, so that here too, from the continui~

equaticm, essentially no charge is developed. This absence of

charge is expected in a homogeneous dielectric region. On the

conductors, though, the currents differ and there is a net charge

density. As expected, the minimum and maximum fields (and

thus polarization currents) are at the outside and inside metal

corners, respectively.

Though nearly perfect symmetry is observed for the polariza-

tion currents about the 45° line bisecting the quarter section,

some asymmetry is observed on the conductors’ surface current.

This is an artifice and results from the periodicity along y but

not along z that is assumed in the solution technique. As the

grid becomes finer or as more Fourier series terms are used in

calculating the matrix elements, this asymmetry decreases. For

this example only, the M used was four times that given in (6).

The x-directed currents are negligible in the dielectric but large

on the conductors. Their contribution to the charge density, in

either case, is small and does not alter the arguments made

above.
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Fig, 4. Normalized current in a quarter section of the coaxial structure

(b /kO = 0.00133, E,= ~00, .SY = S= = 8). (a) In terms of corner currents.

(b) Net currents.

TABLE I
NORMALIZED PROPAGATION CONSTANT AND

CAPACITANCE FOR COAXIAL STRUCTURE

(E, = 100,b/A. = 0.00133)

s, s.

44

88

16 16

32 32

kX/kO

10.946

10.325

10.118

10.043

C (pF/cm)

106.1

95.84

92.61

91.38

Because the coaxial structure is TEM, no transverse current

should flow on its conductors. From Fig. 4(b), the current on the

conductms alternates between positive and negative values. As

the grid is made finer, such a distribution will appear on average

as that of a zero current flow.

The propagation’ constant and the capacitance are given in

Table I. For the coarsest grid (SY = S= = 4), the propagation
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Fig. 5. Effective dielectric constant in microstrip structure (w, = 0.01 cm,

t = 0.002 cm, d2 = 0.1 cm, ~ = 1.0 GHz, S, = 4).
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Fig. 6. Effective refractive index for ribbed vaveguide (2a/t =1,h/t= 1,

d2/t=16, SJ=64, S,=8).

constant normalized to the free-space wavenumber is 10.946 and

the capacitance, C, is 106.1 pF/cm. As the grid is made finer

along each direction by a factor of 2, the respective values

monotonically approach the values of 10 (expected for a TEM

structure having e, = 100) and 90.49 pF/cm (calculated through

a 2-D capacitance algorithm). Though moment method solutions

involving the electric field are often unstable at lower frequen-

cies [28], no instabilities were observed here despite a coaxial

cross section that is only 0.00133A0 across.

The next structure considered is a microstrip which displays

an interesting peak in effective relative dielectric cmstant ~eff

that is not predicted from the static capacitance calculation. The

effective dielectric constant at frequency ~ = 1 GHz is plotted in

Fig. 5, and compared with results obtained using the approach

of Gurel and Chew [3]. A grid of SY = 100 and S= = 4 gives

agreement tQ within g~o. A finer but nonuniform grid (corre-

sponding to SY = 300 in the regions near conductor edges) gives

agreement to within 49%. This still noticeable difference is

attributed to the edge singularity. The basis functions in [3],

which were carefully selected to model this particular structure,

represent the edge current better than the rooftop. The above

accuracies, however, are in line with moment method solutions

that employ a single type of subsectional basis function.

The next structure is a ribbed dielectric waveguide (Fig. 6)

having a refractive index n== &= 1.461 and investigated by

Tsuji et al. [6]. Since the field may not be tightly confined
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(especially at larger wavelengths) significant coupling between

the rib regions in adjacent unit cells may occur. This coupling is

minimized by making d2, the distance between the ribs in

adjacent unit cells, substantial; in [6], d2 k infinite. The effective

refractive index, neff, is closely predicted for the lQwest order

modes (denoted by a O subscript), which in [6] are described as

being essentially TE or TM to the vertical direction. Halving SY

and S= causes only a small difference. The higher order TE and

TM modes can be calculated, although their more rapid spatial

variation requires that the grid be finer, In this and the follow-

ing figure, the axes are normalized to be consistent with those

appearing in the references.

In performing the Newton search, some difficulty was encoun-

tered. The determinant of Z varies, though generally monotoni-

cally, through many orders of magnitude as kX k incrementally

increased. The solution, however, occurs at a relative minimum.

Though convergence is generally within four iterations once a

satisfactory starting value for kX in the Newton search is found,

finding that starting point may take some effort. Another con-

cern is that as d2 is increased to reduce coupling, modes having

lower spatial frequency along y may also satisfy the bounda~

conditions (as in a resonant cavity whose length increases) and

this causes a splitting of the dispersion relation. For these

modes, the polarization current varies sinusoidally in the region

between ribs. The desired mQde is identified by a generally

monotonic decrease in magnitude with y distance from the rib,

which is the evanescent behavior expected for a ribbed wave-

guide unbounded along the y direction [6].

In the last example, a square dielectric waveguide (Fig. 7) is

analyzed and compared with the results reported by Goell [5].

Though the unit cell is subdivided along y into 80 sections, this

corresponds to only eight sections along the dielectric region.

Excellent agreement is obtained, although difficulty was again

encountered in the Newton search. A similar, but hollow, struc-

ture (hollow region is a/2 by a/2 and centered) was also

analyzed. A periodic array of holes is then introduced into the

solid waveguide, with the first stopband plotted for the grid

SX = 4, SY = 80, and S== 8. As expected, for wavelengths below

that corresponding to the stopband (at 1.75 on the independent

axis), the propagation constant falls between that for the solid

and hollow cases. Near the stopband, as also expected, the curve

rises dramatically.

VII. DISCUSSION

A procedure for modeling volume polarization currents using

surface currents has been explored and successfully applied to a

number of representative waveguide structures. These structures

represent a stringent test of the approach, since the results

involve near-field quantities. Based on the numerical conver-

gence and the generally close agreement with previously pub-

lished results, the use of rooftop currents and, in particular,

corner rooftop functions within dielectric volumes has been

justified. Many other structures could be handled, including

those composed of spatially varying or even anisotropic dielec-

tric constants. By defining unit cells that include multiple wave-

guides, coupling effects can be calculated. Though only guided-

wave problems were investigated here, this volume polarization

formulation has also been successfully applied to source-fed and

scattering problems [291.

The approach does have constraints. Structure boundaries

that do not lie on a Cartesian coordinate grid would have to be
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Fig. 7. Propagation constant ior square dielectric waveguide with and with-

out periodic array of holes (d, /a= 0.5, d2/a = 10, ●,= 2.25, S1 = 4,

Sy = 80, Sz = 8).

approximated by steps. Because of the roughly eight to 16 grid

sections per wavelength usually required for moment method

solutions, the dielectric is limited to perhaps several cubic

wavelengths for 3-D problems and perhaps several tens of

square wavelengths for 2-D problems. This rules out analysis of

structures involving dielectric half-spaces. Some difficulty was

encountered, though only in purely dielectric structures, in

finding a suitable starting point for the Newton search. This

difficulty would become more severe if radiative structures were

considered, since a suitable guess would have to include both

real and imaginary parts of the propagation constant.

Because only a single type of basis function is used, the

accuracy may fall short of that possible from approaches where

basis functions are specifically tailored to the structure, and

especially to any conductor edges that may be present. But the

virtue of this approach would become apparent in a setting

where solutions of engineering accuracy for a wide variety of

problems might be needecl. It would not be necessary to inv&ti-

gate the literature and develop an assortment of individual

algorithms. This single approach could be used to solve a large

class of two- and three-dimensional problems.
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A Local Mesh Refinement Algorithm for the Time

Domain–Finite Difference Method Using Maxwell’s

Curl Equations

IHN S. KIM, STUDENT MEMBER, IEEE, AND

WOLFGANG J. R. HOEFER, SENIOR MEMBER, IEEE

Abstract —In this paper we consider an eff]cient Iocai mesh refinement

algorithm subdividing a computational domain to resolve fine dimen-

sions in a TD–FD space–time grid structure. At a discontinuous

coarse–fine mesh interface, the bonndary conditions for the tangential

and normal field components are enforced for a smooth transition of

highly nonuniform field quantities,

I. INTRODUCTION

It is rather straightforward to model a region with smoothly

varying field by using a uniform grid system of large mesh size.

However, when the computational domain contains sharp dis-

continuities or objects, the fields become highly nonuniform in

the vicinity of the discontinuities, and a mesh of very small mesh

size must be employed. This requires a very extensive computa-

tional effort.

There are two ways to take into account the strong nonuni-

formity around a local discontinuity. The first is to use a mesh

with gradually changing mesh size as it is currently employed in

the TLM method. Such a procedure was introduced in the

TD–FD methQd by Choi and Hoefer [1]. The problem with this

method is that for a constant stability factor throughout the

mesh, the time step At must always be varied in accordance

with the local mesh size Al.

In this paper, we propose an alternative approach, which was

presented in more general form by Berger and Oliger [2] in 1984

for simple general hyperbolic partial differential equations. We

have applied this approach specifically to Maxwell’s two curl

equations. In this apprQach we embed a locally uniform mesh of

higher density into the larger mesh. The local uniformity Qf the

mesh is important for keeping the same stability criterion during

a simulation. This means that in the different subparts of the

mesh, the ratio of At to Al is kept the same. This has the

advantage that in all subareas of the mesh exactly the same

TD–FD algorithm can be employed.

Furthermore, Holland and Simpson [3] introduced the thin-

strut formalism to include arbitrarily fine wires in their TD–FD

code, THREDE, in 1981. Kunz and Simpson [4] also introduced

an expansion approach to resolve locally fine objects. They first

computed the field with a coarse mesh, thus obtaining the values

of the tangential electric field at interfaces with a subsequently

refined mesh area, which was analyzed in a second run.

In Qur approach, the coarse and the fine mesh regions are

solved simultaneously, and the bQundary conditions between the

two regions are enforced to ensure a smoQth transition Qf highly

nonuniform field quantities. Furthermore, this scheme is recur-

sive; that is, it can provide a finer and finer resolution if

necessaty.
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